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Undergraduate Quantum Optics – Experimental 
Steps to Quantum Physics 

 
Ruediger Scholz1, Gunnar Friege2, Kim-Alessandro Weber2 
1Institut fuer Quantenoptik, Leibniz Universitaet Hannover 
2Institut fuer Didaktik der Mathematik und Physik, Leibniz Universitaet Hannover 
 
Abstract 
We report on a step-by-step-series of experiments from statistical optics with classical light 
to undergraduate quantum optics (UQO) with single photon states, particularly suitable to 
pave an introductory way to quantum phenomena. We built up a progressive process ana-
lysing temporal variations of the irradiance of light discerned by measuring the value of the 
non delayed second order correlation function g(2)(τ = 0). We demonstrate how Poisson dis-
tributed photoelectron counts from constant irradiance (g(2)(0) = 1) can be used to calibrate 
the apparatus. Measurements with harmonically modulated irradiance of Poissonian light 
gives an introduction into g(2)(0)-correlation-analysis. After these introductory steps we 
demonstrate photon bunching with (pseudo-) thermal light (g(2)(0) ≈ 2), and finally show 
quantum antibunching of photons in Fock states (g(2)(0) ≈ 0). All measurements are in ex-
cellent agreement with the theoretical predictions. 

 
1 Introduction 

Since 40 years photoelectron counting statistics has proven to be a powerful tool to investigate characteristics of 
light (Saleh, 1978). We have experienced that statistical optical experiments are well suited to construct an 
experimental based “pedestrian approach” to quantum physics by focussing on light fluctuations. In this sense 
optical correlation experiments in undergraduate laboratories may contribute to a comprehensive, modern 
physics education figuring out the differences between classical and quantum light. These experiments help to 
enter the realm of photon counting and quantum optics and may lead to a resilient physical intuition (Thorn et. 
al., 2004, Galvez & Beck, 2017). This paper describes a series of such experiments, set up to accompany a 
coherent optics lesson after the second year of studying. We would like to appreciate the work published by Brett 
Pearson and David Jackson in (Pearson & Jackson, 2010). Much of their arguments guided this work. 
 
Section 2 presents the basic photoelectron counting technique. The experiments rely on coincidence 
measurements with a small coincidence window width (w = 5 ns). This technique allows to study light 
fluctuations evaluating the non delayed second-order correlation function g(2)(τ = 0). For the logic circuit of the 
counting unit we expanded the function range of the field programmable gate array (FPGA) design published by 
other groups (e. g. a phase-locked-loop for synchronized pulse shortening; see appendix C); here we would like 
to emphasize the quite pioneering counting scheme of Branning et. al. (Branning, Bhandari, and Beck, 2009).  
 
In section 3 we present details and results of the experiments. Recently we demonstrated a low cost LED-set-up 
to produce (pseudo-) thermal light with a perfect geometrical distribution of photoelectron counts (Scholz, 
Friege, & Weber, 2016). Now, in the next step, we expand the ideas to statistical optics with harmonically 
modulated irradiance (Fox, 2006) and finally with single-photon Fock light. As a source for correlated photons 
we use spontaneous parametric down conversion (PDC), increasingly common in undergraduate laboratories. 
 
Student’s guide (https://www.idmp.uni-hannover.de/256.html) To ensure an appropriate scope of this article, 
we decided to swap out some of the content. Original data from single-photon-experiments (for classroom bound 
evaluation), details to align the setup and to build a copy of our counting unit are available from our website. 
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2 Fluctuation analysis 

2.1 The binary detection scheme 
Introductory quantum optics textbooks present the analysis of field fluctuations as a basic concept to analyse 
light fields within the boundaries of classical Maxwell physics and in the quantum regime as well. Let us start 
with some basics of “light counting” (for a systematic presentation of the theory see Loudon, 2000). 
 
Field correlation: Classical optical fields are well described by the irradiance derived from electromagnetic 
waves. The somehow vague term  intensity and the radiometric term irradiance (i.e. the radiation power reaching 
an area A of the detector divided by the area A, in W/m2) are often used synonymously. Here we prefer the term 
irradiance. Further it should be stated that I(t) represents the cycle-averaged irradiance, thus we may dispense 
with a particular marking of this standard averaging process. For quasi-monochromatic waves with a slowly 
varying amplitude E0(t) we get 

  
E z,t( ) = E0 t( )sin ωt − kz( )⇒ I t( ) = ε0c E2 t( )

t
≈ 1

2 ε0cE0
2 t( ).  

 
For classical waves the slowly varying amplitude E0(t) is connected to the frequency spectrum via the usual 
Fourier transformation 

 
  
E Ω( ) = 1

2π
dtE t( )expiΩt

−∞

∞

∫ . 

The line shape I(Ω) is then derived from an auto-correlation of the field strength: 

 

   

I Ω( ) = E Ω( ) 2
= 1

4π 2 dt ' dt
−∞

∞

∫ E t '( )E* t( )exp iΩ t '− t( )( )
−∞

∞

∫

= 1
4π 2 dτ dt

−∞

∞

∫ E t +τ( )E* t( )

→ 1
T

d t
0

T

∫ E t+τ( )E* t( )= E* t( )⋅E t+τ( )
T

! "### $###
exp iΩτ( )

−∞

∞

∫   

For a sampling time T large compared to the delay τ and for an angular frequency at the center of the line we get 
the auto-correlation of the light field 〈E*(t) ⋅ E(t + τ)〉, analyzing typical coherence features from first order 
interference phenomena. The essential work from Hanbury Brown and Twiss (Hanbury Brown, Twiss, 1956) 
tells us that the analysis of light field fluctuations is based on irradiance correlation (eq. (2.3)). 
 
Sample averaging: The sampling characteristic of the detectors requires a further averaging over the sampling 
period T. In this case the irradiance measured by the detector at time t is given by the average value 

 
I t( )

T
: 

 
  

I t( )
T
= 1

T
dt ' I t '( )

t

t+T

∫ . (2.1) 

As our detectors are running in a binary Geiger mode they convert the continuous input irradiance into a pulse 
train. The counting rate 〈N〉/T of the pulses is proportional to the input irradiance. From semi-classical detection 
theory we get the mean number of impulses 〈N〉T generated from a mean irradiance 〈I(t)〉T impinging on the 
detector during the sampling interval T (from the output channel 3 und 4 of the beam splitter, see fig. 1):  

 
  

N3 T
=η3T I3 t( )

T
 and

  
N4 T

=η4T I4 t( )
T

, (2.2) 

here η characterizes the detection efficiency of the detector not specified at this point (Loudon, 2000). For a 
more rigorous  derivation of counting probabilities see appendix A. 
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2.2 Correlation measurement: Twofold coincidences 
 

 
1 The double-detector arrangement of the Hanbury Brown-Twiss 

interferometer: Input at Channel 1 and 2, output at channel 3 and 4 

 
A countless number of educational experimental settings rely on the irradiance-interferometer shown in fig. 1 
first introduced by Hanbury Brown and Twiss to measure correlation effects in light beams (Hanbury Brown, 
Twiss, 1956). The light fields registered by two detectors D3 and D4 at the output channels of a 50:50 optical 
beam splitter are represented by the irradiance 

  
I3 t( )  resp. 

  
I4 t( ) . The fluctuations of these light fields are 

analysed by studying the normalized correlation of the irradiance from the output channels of the beam splitter: 

 
  
g3,4

2( ) τ( ) = I3 t( ) I4 t +τ( )
T

I3 t( )
T

I4 t +τ( )
T

 

where τ specifies a possible delay between the detector signals 
  
I3 t( )  and 

  
I4 t +τ( ) . We emphasize that g(2)(τ) is 

the irradiance analogue of the first-order correlation function g(1)(τ) closely related to the contrast of interference 
fringes (Fox, 2006). For our purposes the analysis of coinciding pulses from D3 and D4 (fig. 1) is of special 
interest. Thus we will study light fluctuations from the correlation of non-delayed fields, τ = 0, what will 
remarkably simplify the experiments, even for the observation of of single photon antibunching (for an excellent 
representation and overview see (Pearson & Jackson, 2010): 

 
  
g3,4

2( ) 0( ) = I3 t( ) I4 t( )
T

I3 t( )
T

I4 t( )
T

. (2.3) 

For low irradiance using the binary detection scheme as described above, eq. (2.3) has to be converted into a 
discrete impulse version. Inserting eq. (2.2) the normalized correlation function eq. (2.3) can be rewritten 

 
  
g3,4

2( ) 0( ) = I3 t( ) I4 t( )
T

I3 t( )
T

I4 t( )
T

=
N3 ⋅N4 T

N3 T
N4 T

.  (2.4) 

In our experiments the correlation is determined from the measurement of the number of impulses coinciding 
within a small time window w: 
• Coincidence counting involves at least two detectors sending pulses to a central counting unit (CCU). 
• A two-fold coincidence is defined to be a sample of two pulses that are registered (nearly simultaneously) 

within a small time interval of width w. Using n detectors and an appropriate counting unit gives the 
opportunity to measure n-fold coincidence; our experiments are restricted to n ≤ 3. 

 
Coincidences may be accidental or caused by particular physics “hidden“ in the fluctuations. For the accidental 
case 〈N3〉 and 〈N4〉 are independent, yielding

  
N3 ⋅N4 T

= N3 T
⋅ N4 T

, regardless of T leading to
  
g34

2( ) 0( ) = 1 . 
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Let us now introduce the number N34(w) of 3-4-coincidences measured within the short time window w. It is 
reasonable that the rate of coincidences N34(w)/w is equal to the rate of correlated pulses during the sampling 
time T: 

  
N3 ⋅N4 / T . In our experiments we measure N34(w). Rewriting eq. (2.4) gives the final equation: 

 
  
g3,4

2( ) 0( ) = N3 ⋅N4 T

N3 T
N4 T

=
N34 w( )

N3 T
N4 T

T
w

.  (2.5) 

2.3 Triple coincidences 
 

   
 

2 The gated single-photon-equipment 

 
To produce correlated photons, we used the standard parametric-down-conversion (PDC) device. Fig. 2 shows 
the set up. The detectors D3 and D4 serve as signal detectors, while detector DG delivers a trigger pulse (idler 
photon). In the experiments we are counting the number of impulses from D3 and D4 within a small time window 
w solely under condition that DG had sent a trigger pulse. Let us write N3|G(w) and N4|G(w) for these conditioned 
single counting numbers and N34|G(w) for the conditioned coincidences during w. Then from eq. (2.5) we get for 
the correlation function 

 

  

g3,4
2( ) 0( ) = N34|G w( )

N3|G w
N4|G w

w
w
=

N34|G w( )
N3|G w

N4|G w

.  (2.6) 

Here we set T = w because only pulses within the small time window w are counted. From elementary 
probability theory the connection between joint and conditioned probability is well known. The same holds for 
the corresponding count numbers: Nx|G = NxG/NG; inserting into eq. (2.6) we get: 

 
  
g34G

2( ) 0( ) = N34G w( ) / NG

N3G w
N4G w

/ NG
2 =

N34G w( )
N3G w

N4G w

NG .  (2.7) 

N34G is the number of triple coincidences for the three detectors, while N3G and N4G are the twofold coincidences 
between D3 and DG and D4 and DG respectively. N34G, N3G and N4G are directly measured in the experiment. 
 
2.4 Counting set up 
Let us now describe the signal processing set up (for details of the complete apparatus see appendix C). The 
device has been built as a version of the coincidence counting unit (CCU) proposed in (Goodman, 1976 and 
Branning et. al., 2009) using AND-gates to detect coincident pulses. Core element of the CCU is a field 
programmable gate array (FPGA, fig. 3). In our CCU we used the programmable logic blocks of the FPGA to 
perform combinational logic functions and simple logic gates like AND and XOR. Due to the concentrated array 
structure it is possible to run the FPGA in a fast parallel processing mode of the input signals. A very precise 
controlling of the sampling time T could be realized by triggering the FPGA with a 50 MHz-real time clock. 
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3 Block diagram of the FPGA unit; the circuit has been used to realize a pulse 

shortener, the AND gate and the 50 MHz real time clock 

 
(1) Pulse-shaping: The 50 ns-detector pulse length from the avalanche diode (APD) is much to long for our 
purpose. We aimed at a coincidence window width w ≈ 5 ns. Fig. 4 shows the pulse-shaping procedure. The 
process is accomplished by use of two copies of the incoming pulse of length TP. One of them is delayed by τ’ 
and logically inverted. Using these pulses as inputs of an AND gate, we obviously get the shaded high level 
output signal: The AND output will only be high for the time delay τ’. This temporal data-alignment of the two 
pulses has been achieved by a shift register with a 400 MHz-system-ticker (8-fold phase-locked-loop-signal from 
the 50-MHz-clock). Thus we could align a τ’ ≈ 2.5 ns-delay between input and output of the shift register per 50-
MHz-clock cycle. Technically the delay has been restricted to n = 5 clock cycles, leading to a proper pulse length 
τ = n ⋅ τ’ (the real value of τ’ has to be measured; see section 3.1). 
 

 
4 The pulse-shaping process 

 
(2) Coincidence window: Two incoming and overlapping pulses of duration τ’ will set the high level of an 
AND-gate from the leading edge of the first of the pulses until the trailing edge of the second one. From the  
overlapp of two 2.5 ns-pulses we thus get a coincidence window width w ≈ 2τ’ = 5 ns. We measured the length 
of the coincidence window width in a quantum optics experimental setup, however with classical chaotic light 
from a LED. This light would solely produce accidental coincidences with 

  
g3,4

2( ) 0( ) = 1 . Then from eq. (2.5) w 

can be evaluated (see section 3.1) 
 
(3) Coincidence processing: From 15 single counters of our CCU, all running in a parallel mode, we used 3 
counters for the input channels, 3 counters for two-fold coincidences and one for triple coincidences. 
 
(4) Adjusting the sampling time T: To adjust a proper sampling time T the counter has been triggered by a 
50 MHz signal: A sampling time T = 1 s could be realized by setting an open gate for 5⋅107 ticker cycles from 
the clock. 
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3 Experiments 

Now we present the series of experiments culminating in an experiment demonstrating the Fock state 
antibunching phenomenon. A compilation of the complete program is shown in the following table. The 
presentation of the experiments in the particular subsections gives detailed explanations. 
 
1 

  
g34

2( ) 0( ) -Measurement 

with uncorrelated light 

Calibration: Measurement 
of the window width w 

Uncorrelated light yields
  
g34

2( ) 0( ) = 1  and we can 

deduce the temporal window width w 
2 

  
g34G

2( ) 0( ) -Measurement 

with uncorrelated light 

Performance of the AND-
gate electronics for triple 
coincidences 

Pure accidental coincidences yields 
  
g34G

2( ) 0( ) = 1  

and we can normalize the measurement of triple 
coincidences to 1 for uncorrelated light 

3 
  
g34

2( ) 0( ) -Measurement 

Poissonian light 
  
I t( ) = I(t)

T
= const.  

  
g34

2( ) 0( ) = 1  

4 
  
g34

2( ) 0( ) -Measurement 

modulated irradiance   

I(t)
T
= I0 1+ S sinωt( )

S ≤1
    

g34
2( ) 0( ) = 1+ S 2 / 2  

5 
  
g34

2( ) 0( ) -Measurement 

(Pseudo-) thermal light 
  

I(t)
T
= I0 + ΔI th  

  
g34

2( ) 0( ) = 2  

6 
  
g34

2( ) 0( ) -Measurement 

Fock state 
  
ψ

in
= 1  

  
g34

2( ) 0( ) = 1− 1
n

; 
  
g34

2( ) 0( ) = 0  

7 Single-photon-
interference 

  
ψ

in
= 1  We added this experiment as a supplement 

underscoring simultaneously two characteristics 
of the photon: The undividability and the ability 
of quantum randomness to interfere. 

 
3.1 Calibration of the CCU: Coincidence window width w 
 
 

 
 
5 Outline of principle elements of the experimental set up 

 
As shown in fig. 2 and 3 and described there, the shortened pulse occurs inside the solid state logic of the FPGA. 
Thus it is not possible to observe the w-pulse directly. To measure the coincidence window width w we 
determined N34(w), N3 and N4 for completely uncorrelated light of the LED with constant forward current (see 
fig. 5 for the principle set up). While expecting g(2)(0) = 1, we can use eq. (2.5) to derive w from a linear fit: 

  

  

g3,4
2( ) 0( ) = N3 ⋅N4 T

N3 T
N4 T

=
N3 T

N4 T

N3 T
N4 T

= 1

g3,4
2( ) 0( ) = N34 w( )

N3 T
N4 T

T
w

⎫

⎬

⎪
⎪

⎭

⎪
⎪

⇒
N34 w( )

N3 T
N4 T

T = w = 2nτ '.   (3.1) 
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The coincidence window width w = 2 ⋅ n ⋅ τ’ could be adjusted by changing the number n of clock cycles (fig. 3). 
Fig. 6 shows the experimental results and a linear fit (eq. (3.2)) with parameters τ’ = 2,45 ns and Δ = 1,73 ns: 

 
  

N34 w( )
N3 T

N4 T

T = w = 2τ 'n+ Δ  (3.2) 

The linearity between w and n is perfect (R2 = 1). A reasonable origin of the intercept Δ is a slight increase of w 
not depending on the number of clock cycles due to a lowered slope of the leading edge of the measurement 
pulse (see fig. 4). For the following measurements we used the fitted value w(n) = (4,90 ⋅ n + 1,73) ns. 
 

 
6 w = T ⋅ N34(w)/(〈N3〉T ⋅ 〈N4〉T) = 2 ⋅ n ⋅ τ’ + Δ as a function of the number n of 

clock cycles shifts (eq. (3.2)) 

 
3.2 Calibration of the CCU: Test of the coincidence-AND-gate-set-up 
Our triple-gated scheme relies on the triple coincidence N34G (eq. (2.7)) measured by a cascade of two AND 
gates. A small time delay of the input pulses is leading to counting losses in this gate cascade. This phenomenon 
seems to be typical for the measurement of triple coincidences and has been studied experimental carefully (see 
e. g. (Beck, 2007)). To check our system we used the triple detector set up shown in fig. 2 however with a piece 
of coloured fluorescence glass instead of the BBO-crystal and thus measuring solely accidental coincidences. 
Again scanning the window width w(n) by varying the number n of clock cycles we get as a mean from 1.000 
measurements (sampling time for each measurement 0.1 s): 
 
n w(n)/ns NG N3 N4 N3G N4G N34 N34G g(2)(0) 
1 6.64 390 387 164 596 165 958 432.97 422.25 180.23 0.390 0.835 (0.04) 

2 11.54 394 050 164 005 168 712 739.43 788.80 324.01 1.199 0.810 (0.02) 

3 16.44 401 140 169 879 172 790 1116,96 1129.72 478.08 2.457 0.781 (0.015) 

4 21.35 395 900 160 767 170 826 1354,48 1469.36 589.571 3.874 0.771 (0.01) 
 
Table I. Correlation results N34G for the three output channels of the triple-gated scheme with uncorrelated fluorescence light from a 

coloured glass plate instead of the BBO-crystal (averaging over 1,000 runs); standard errors in parenthesis for g(2) 

 
 
n w(n)/ns NG N3 N4 N3G N4G N34 N34G g(2)(0) 
1 6.64 390 387 164 596 165 958 432.97 422.25 180.23 0.488 1.045 (0.05) 

2 11.54 394 050 164 005 168 712 739.43 788.80 324.01 1.501 1.014 (0.03) 

3 16.44 401 140 169 879 172 790 1116,96 1129.72 478.08 3.074 0.977 (0.02) 

4 21.35 395 900 160 767 170 826 1354,48 1469.36 589.571 4.848 0.964 (0.015) 
 
Table II. Correlation results N34G (corrected) for the three output channels of the triple-gated scheme with uncorrelated fluorescence light 

from a coloured glass plate instead of the BBO-crystal (averaging over 1,000 runs); standard errors in parenthesis for g(2)(0) 
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The second order correlation function has been calculated from eq. (2.7) 
  
g34G

2( ) =
N34G ⋅NG

N3G ⋅N4G

. Obviously g(2)(0) lies 

significantly below the value g(2)(0) = 1, expected for uncorrelated light. From the measured values in table I we 
derive a mean correction factor 1/0.799 for N34G. Our further measurements will introduce this correction factor 
to avoid the gate-cascade-error in triple-coincidence experiments. 
 
3.3 Measurement of light characteristics 
Constant irradiance from a LED with constant forward current: I(t) = 〈I〉  = const. 
For completeness we report on this experiment from the calibration sequence. Here we used a 900-nm-infrared 
diode and a large sampling time T = 100 ms thus washing out any fluctuations. We can treat the irradiance as 
const. Fig. 7 shows the experimental results. We plotted the values of 

  
g34

2( ) 0( )  for 2,000 single shots as a function 

of a increasing number of averaging steps: 

 
  

g34
2( ) 0( )

M
= 1

M
g34

2( ) 0( )l
l=1

M

∑ ;1≤ M ≤ 2000 . (3.3) 

 It could be seen that 
  

g34
2( ) 0( )

M
 approaches a value near the theoretical prediction 

  
lim
M→∞

g34
2( ) 0( )

M
= g34

2( ) 0( ) = 1 . 

 
7 Light with constant irradiance approaching the value g34

(2)(0)  = 1.02 with 
increasing number of measurements. The theoretical prediction is 
g34

(2)(0) = 1 (eq. (2.5). The shaded area shows the standard error. 

 
Modulated irradiance: I(t) = I0⋅(1+S⋅sinω t) 
 

 
8 Left: The modulation of the irradiance, N(t) = ηI(t)T  

 
The next correlation experiment focuses on the situation of harmonically modulated irradiance 
I(t) = I0⋅(1+S⋅sinωt) with |S| ≤ 1 (fig. 8; this experiment has been proposed by Mark Fox in (Fox, 2006)). In the 
experiment we used a LED as light source with an appropriate modulated forward current and a detection 
sampling time (T1 ≈ 100 ms) long compared to the fluctuation time scale (≈ 10–14 s). During a much longer 
detection period    T2 ≫1 ω  the sinusoidal modulated irradiance has been sampled. 
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The random fluctuations completely wash out during T1 and with an excellent approximation the irradiance may 
treated constant during T1: I = I0 = const. A standard function generator delivered the sinusoidal voltage signal to 
realize 0 < |S| ≤ 1. Gradually we varied the irradiance with a single step duration of T1 ≈ 100 ms. During each 
step the irradiance has been left unchanged (fig. 8). The steps almost follow the sin-function. For each step 
interval we take the irradiance as constant with the long time mean value of the irradiance 〈I(t)〉 = I0. 
 
The second order correlation function is easily calculated for the modulated irradiance. From eq. (2.7) we get for 
a 50/50 beam splitter 

 

  

g3,4
2( ) 0( ) =

I3 t( ) I4 t( )
T2

I3 t( )
T2

I4 t( )
T2

=
I t( )2

I t( ) 2 =
I0 1+ S ⋅sinωt( )( )2

T2

I0 1+ S ⋅sinωt( )
T2

2

= 1+ S 2 sin2ωt( )
T2

= 1+ 1
2

S 2.

 (3.4) 

The great advantage of this set up is a completely known temporal variation of the irradiance. Therefore this 
experiment gives a perfect introduction to g(2)(0)-measurements and the usage of the CCU. Fig. 9 shows the joint 
presentation of the experimental results and the theoretical expectation for T =100 ms and 
w(n = 2) = (2 ⋅ 4,90 + 1,73) ns. The excellent agreement between theory and experiment is disturbed by a 
discrepancy for higher S-values. This discrepancy is caused by an interesting noise phenomenon: For high 
modulation amplitudes the low irradiance part of I(t) = I0⋅(1+S⋅sinωt) reaches the dark noise area of the APD 
(dark noise clipping). 
 

 
9 The second order coherence function g(2)(0) as a function of the modulation 

amplitude S; open circles experimental values, closed line directly eq. (3.13) 
resp. 4.4. The standard error is much smaller than the diameter of the circles. 

 

 
10 g(2)(0) → 1.93 for pseudo thermal light. The theoretical prediction is 

g(2)(0) = 2. The shaded area shows the value of the standard error. 
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(Pseudo-) thermal light: I(t) = 〈I〉  + ΔIth; N geometrically distributed 
Here we analysed the light from the (pseudo-) thermal modulated LED recently published (Scholz et al., 2016). 
To apply eq. (2.5) the mean values of g(2)(0) has been calculated by averaging over 10,000 measurements. 
Fig. 10 demonstrates the process of approaching the final values of g(2)(0). After 10,000 shots we found 
g(2)(0) → 1.93 (fig. 10), a value in good agreement with the theoretical value g(2)(0) = 2 (see eq. (B.4)). 
 
Single photon quantum light at the beam splitter 
For a quantum physical perspective the classical light field strength has to be replaced by the appropriate 
quantum physical operators (see introductory quantum optics textbooks, e.g. Grynberg, Aspect & Fabre, 2010). 
For a single mode field we get: 

 

  

E t( ) = E0 t( )sin ωt − kz( )∝ i α expikz −α * exp− ikz( )→
Ê t( )∝ i âexpikz − â† exp− ikz( ),   

with the quantum mechanical ladder operators   â†  for the creation of a photon and   â  for the annihilation of a 
photon. The number of photons in the quantum optical light state is counted by the number operator   n̂ = â† ⋅ â . 
 
From a quantum optical calculation of the correlation function (see appendix B) we can deduce theoretical 
values for g(2)(0). For this purpose we have to replace the classical numbers like 〈N3⋅N4〉 in eq. (2.4) by 
appropriate quantum mechanical number operators  n→ n̂ : 

 
  
g3,4

2( ) 0( ) = N3N4

N3 N4

→ g3,4
2( ) 0( ) = n̂3n̂4

n̂3 n̂4

. (3.5) 

Here we can use the number of photons instead of the number of photoelectrons from the detector. Due the gated 
single photon set up the number of photoelectrons from the binary detector and the number of photons are 
identical. 
 
With a little operator algebra (see appendix B) eq. (3.5) can be traced back to the number of photons at the input 
of the beam splitter characterizing the input light 

 

  

g34
2( ) 0( ) = n̂3n̂4

n̂3 n̂4

= 1+
var n1( )− n1

n1

2 .  (3.6) 

 
11 g(2)(0) for single photon light approaching the value g(2)(0) « 1 with 

increasing number of measurements. The theoretical prediction is g(2)(0) = 0 
(eq. (B.4)). The shades area shows the standard error. Residual accidental 3-
fold coincidences and residual dark noise from the detectors lead a lower 
limit g(2)(0) > 0. 
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By definition Fock photon states do not exhibit variances of the photon number: var(n) = 0. Thus Eq. (3.6) yields 

  
g34

2( ) 0( ) = 0 . The experimental results are shown in fig. 11: 
   
g34

2( ) 0( )≪1 . The dramatic loss of correlation is 

usually called antibunching. This phenomenon has been first published by Mandel and co-workers (Kimble, 
Dagenais, & Mandel, 1977). Since then an overwhelming bunch of literature deals with this quantum effect. We 
included the phenomenon not only to demonstrate the functional capability of the set up in a more advanced 
experimental region closer to research. It seems to be obvious that antibunching experiments work as key 
experiments in a contemporary introduction to quantum physics. And according to this educational feature this 
experiment serves as a obvious completion of our experimental steps to quantum physics. 
 
Stochastic of photons 
With our experiments it was unequivocally established that no (or virtually no; take special notice of the ordinate 
scaling) coincidence between output channels D3 and D4 can be measured. Photons are passing the beam splitter 
without being divided. This experiment clearly violates the predictions holding for any classical wave model. It 
should be noted that on the other hand the nonlinear PDC-process itself may be viewed as a perfect beam 
splitter, even suited to split the incoming photon into two perfectly correlated ones coming out off the nonlinear 
crystal. Our arguments however focus on linear optical devices where photon splitting is not possible. 
 
An interesting perspective arises if one keeps in mind that the unitary transformation from the beam splitter can 
not be the origin of randomness. The output state of the beam splitter is a deterministic superposition of the two 

possible output channels (
 

1
2

0
3

1
4
+ 1

3
0

4( ) ). Under this perspective the randomness arises due to the 

detection. Complete decoherence (a quantum-to-classical-transition) of the superposition occurs due to the 
interaction of the photon and the detector. Finally one of the detectors annihilates the photon by measuring it and 
thus slurring the whole photon energy. The other detector will never be able to coincide (Leuchs, G., 2016). 
 
Photons “between a rock and a hard place” 

 
This experiment is designed to reveal the photon’s two sides of the same coin. A rough sketch of the 
experimental set up is shown in fig. 12. At the first beam splitter photons are reflected with a 0.5-probability. 
The two output channels (transmission vs. reflection) show the g(2)(0) = 0-antibunching of undividable photons 
(fig. 11). Now it follows a Michelson interferometer. A single photon interacts with the Michelson producing 
interference. Scanning the distance between mirror M1 and the beam splitter we find a perfect interference 
pattern with 93% visibility (s. fig. 13). What is the origin of an interference if there is no wave? At this point we 
open the door to quantum physics arguments dealing with one of the special feature of quantum physics: The 
ability of quantum probability to interfere (Heusler & Schlichting, 2005). 
 
The origin for a lower limit N4G, min > 0 is the sum of noise effects: Thermal noise from the APD, electronic noise 
from the power device, vibrations of the set up. 

                    
12 Two different quantum features in one experiment: At the 

first beam splitter photons behave like particles following a 
0.5-probability to be reflected into the interferometer; there 
photons show the interference of quantum mechanical 
randomness. 

13 Two-fold coincidences N4G for the single photons show 
perfect fringes of the interference pattern (visibility 
V = 93 %); dashed curve shows the cos2-fit; the standard 
error of the measurement is of the order of the diameter of 
the closed circles 
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4 Conclusion 

We demonstrated a series of undergraduate experiments designed to pave the way to quantum optics.  
 
• Fluctuations of light with constant irradiance should be embedded into a discussion of both, the 

Poissonian produced by the binary detector and as a consequence of discrete occurrence of undividable 
photons. 

• Modulated irradiance gives a very easy access to g(2)-analysis without oversimplifying the subject. This 
experiment is well suited to introduce the complete stochastic tool box used around fluctuation measure-
ment schemes. 

• The observation of fluctuations of thermal light yields very fast detectors. On the other hand the 
production of (pseudo-) thermal light via the appropriate controlling of the forward current of a LED is 
pretty easy and is leading to particularly suited undergraduate experiments: Experiments showing bunch-
ing-phenomena in statistical optics may surely be viewed as milestone experiments on the way to an-
tibunching experiments in quantum optics. 

• Finally the single-photon-experiments show as well the special meaning of real single-photons (unlike 
low irradiance of laser light), it demonstrates kernel characteristics of quantum physics that cannot be 
described by classical physics (superposition, interference of the single-photon state). 

 
All these experiments rely on fluctuation phenomena. The theoretical difference between classical physics and 
photon-quantum-mechanics is comprehensible and closely squired by appropriate experiments. Thus our 
experiments are well suited for an experimental based approach to quantum physics. They are designed to avoid 
photon-misconceptions, to reduce relevant access-barriers and hopefully tends to open student’s minds for 
completely new physical concepts. Undergraduate quantum optics experiments have been published previously 
and have been successfully used in undergraduate labs (Thorn et al. 2004). The special idea behind the way 
presented in this paper is targeting on a particular focussed training of statistical optical methods relying on g(2)-
measurements before entering the quantum world. The usage of correlation measurements will not produce 
major difficulties at university. To open the door of classrooms at school for a correlation analysis, however we 
will have to invest much more into teacher’s training, in service and before. 
 
Next steps: The observation of polarization entangled photonic states and an appropriate Bell-analysis will 
integrate another central quantum feature into the course. Careful studies of noise should reveal sub-Poissonian 
behaviour for the entangled photon states, provided the quantum efficiency of the APD is high enough.  
 
Further reading: The physics of single photon light is the topic of numerous publications. From this 
overwhelming bunch we would like to recommend three publications that seem to be well suited to support 
undergraduate studies: 
• Antibunching of single photons and the method of photon counting at a beam splitter has been 

demonstrated in a particularly cogent way in (Grangier, Roger, and Aspect, 1986). Though experimental-
ly not easy to handle, the fluorescence cascade exhibits a quite high level of clarity. 

• In a different experimental set up two distinct quantum features could be observed simultaneously: The 
fluorescence light from a single stored atomic ion in a radiofrequency trap shows antibunching (proofed 
by a g(2)-analysis of coincident signals) and a probability distribution significant narrower than Poissonian 
(Diedrich and Walther, 1987). 

• A clarifying spot on experiments with single photons and beam splitters and a virtually complete list of 
the relevant literature could be found in the ICO Newsletter 106, January 2016 “Getting used to quantum 
optics ... “ (Leuchs, 2016). 
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Appendix A  Mean and variance  

Typical results of counting experiments using binary Geiger mode detectors are probability distributions, mean 
values and variances of impulses processes from the detector. The connection between the irradiance of the 
incoming light and the count statistics is of vital importance. For a lot of cases this connection can be described 
by a Poissonian impuls process. A mean irradiance (see eq. (2.1)) impinging on the detector during time T leads 
to a mean value of 

 
N

T
=ηT I t( )

T
 counts. The probability to get N counts is given by (Loudon, 2000) 

 
  
PT t, N( ) =

ηT I t( )
T( )N

N !
exp −ηT I t( )

T( ).  (A.1) 

Mean and variance from Mandel’s formula 
The experiments are usually performed as series of independent “single shots”. The final result is in those cases 
the mean value averaged over all measurements: 

 

  

PT M( ) =
ηT I t( )

T( )M

M !
exp −ηT I t( )

T( )
measurements

.  (A2) 

This formula is often referred to as Mandel’s formula (Mandel,1958). Starting with eq. (A.2) the calculation of 
the mean value and the variance is straight forward: 

 

   

N = MPT M( )
M=0

∞

∑ = M
ηT I t( )

T( )M

M !
exp −ηT I t( )

T( )
M=0

∞

∑

= ηT I t( )
T( ) ηT I t( )

T( )M−1

M −1( )! exp −ηT I t( )
T( )

M=1

∞

∑
1

! "####### $#######
= ηT I t( )

T
.

 (A3) 

 

 

   

N 2 = M 2P M( )
M=0

∞

∑ = M 2
ηT I t( )

T( )M

M !
exp −ηT I t( )

T( )
M=0

∞

∑

= ηT I t( )
T

M
ηT I t( )

T( )M−1

M −1( )! exp −ηT I t( )
T( )

M=1

∞

∑

= ηT I t( )
T

ηT I t( )
T( )M−1

M −1( )! exp −ηT I t( )
T( )

M=1

∞

∑
=1

! "####### $#######
+ M −1( )

ηT I t( )
T( )M−1

M −1( )! exp −ηT I t( )
T( )

M=1

∞

∑
⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

= ηT I t( )
T

1+ηT I t( )
T

M − 2( )
ηT I t( )

T( )M−2

M − 2( )! exp −ηT I t( )
T( )

M=2

∞

∑
=1

! "######## $########

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

= ηT I t( )
T
+ ηT I t( )

T( )2

= N + ηT I t( )
T( )2

.

(A4) 
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Thus we get the variance of the count number N: 

 
  
var N( ) = N 2 − N

2
= N + ηT I t( )

T( )2
− ηT I t( )

T( ) 2

.   (A5) 

The first term is the contribution from the Poissonian character of the binary detector’s single shot regime (shot 
noise), independent on the light features, while second one is contributed by the physical characteristics of the 
light fluctuations. 
 
Photo counts from coherent laser light 
In some cases the averaging process in eq. (A.2) can be carried out by an integration over the distribution p(i)di 
of the irradiance (see Goodman 2000): 

 

  

PT M( ) =
ηT I t( )

T( )M

M !
exp −ηT I t( )

T( )
measurements

= d I t( )
T

p I t( )
T( ) ηT I t( )

T( )M

M !
exp −ηT I t( )

T( )
0

∞

∫ .

 (A.6) 

For ideal laser light the irradiance I0 is constant and the distribution is given by Dirca’s delta function 
p(i)di = δ(i – I0) di. The count numbers are Poisson distributed in this case (

 
i = I t( )

T
) 

 

  

PT M( ) = diδ i − I0( ) ηTi( )M

M !
exp −ηTi( )

0

∞

∫

=
ηTI0( )M

M !
exp −ηTI0( ).

 (A.7) 

Photo counts from thermal light 
For polarized thermal light the irradiance could be shown to be exponential distributed (Goodman, 2000), 

  
p(i)di = 1

I
exp − i

I( ) , with a long time mean for the irradiance  I . Inserting into eq. (A.2) the distribution of 

counts is evaluated as 

 

  

PT M( ) = 1
I

diexp − i
I

⎛
⎝⎜

⎞
⎠⎟
ηTi( )M

M !
exp −ηTi( )

0

∞

∫

=
ηT( )M

IM !
di ηTi( )M

exp −i ηTI +1
I

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟0

∞

∫

=
ηT( )M

IM !
I M+1M !

ηTI +1( )M+1 =
M

M

M +1( )M+1 .

 (A.8) 

With a long time mean for the count number
 

M =ηTI  and 
  

dxxn exp −ax)( ) = n!
an+1

0

∞

∫ . 

Thermal light photon distribution 
As shown in many quantum optics textbooks the probability distribution of the photon number n, the mean 
values 〈n〉 and the var(n) can be calculated directly from Planck’s formula. Starting with the definition of the 
expectation value we get for a single radiation mode within a cavity in the thermal equilibrium (with an absolute 
temperature T): 
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P n( ) = 1− exp −!ω / kBT( )( ) ⋅exp −n!ω / kBT( ) = 1−U( )U n

n = P n( )n
n=0

∞

∑ = 1−U( ) U nn
n=0

∞

∑

n2 = P n( )n2

n=0

∞

∑ = 1−U( ) U nn2

n=0

∞

∑

 (A.9) 

Now applying the helpful differentiating procedure to evaluate the sum (e. g. Fox 2006) we get 

 

   

n = P n( )n
n=0

∞

∑ = 1−U( ) U nn
n=0

∞

∑ = 1−U( )U d
dU

U n

n=0

∞

∑

= 1−U( )U d
dU

1
1−U

= 1−U( )U 1

1−U( )2 = 1
U −1 −1

n = 1
exp !ω / kBT( )−1

.

 (A.10) 

 

  

n2 = P n( )n2

n=0

∞

∑ = 1−U( ) U nn2

n=0

∞

∑ = 1−U( ) nU n +U 2 ∂2

∂U 2 U n

n=0

∞

∑

= n + 2 U
1−U

⎛
⎝⎜

⎞
⎠⎟

2

= n + 2 n
2
.

 (A.11) 

 
  
var n( ) = n2 − n

2
= n + 2 n

2
− n

2
= n + n

2
.  (A.12) 

 

Appendix B  Derivation of the quantum version of g(2)(0) 

For a quantum field we merely replace the classical averages like N34 = 〈N3⋅N4〉 by the appropriate quantum 
mechanical operators. The first step is to introduce the number operators:  n→ n̂ = â†â .   â†  and   â  are the 
operators, raising and lowering the number of photons by 1, respectively: 

  

  

â n = n n−1

â† n = n+1 n+1

⎫
⎬
⎪

⎭⎪
⇒

â†â n = â† n n−1 = n n

ââ† n = â n+1 n+1 = n+1( ) n

⎧
⎨
⎪

⎩⎪
 (B.1) 

The effect of lossless beam splitters is usually described by a unitary transformation relating the output fields to 
the input fields classically and quantum mechanically as well. The particular form of the transformation matrix 
depends on a phase difference between the transmitted and reflected photon wave function (Loudon, 2000). One 
of the most simplest relations is given by 

 
  

a3
†

a4
†

⎛

⎝
⎜

⎞

⎠
⎟ =

1
2

1 1
1 −1

⎛

⎝⎜
⎞

⎠⎟
a1

†

a2
†

⎛

⎝
⎜

⎞

⎠
⎟ . (B.2) 

Now, with eq. (B.1) and inserting the commutator rule for ladder operators:
  

â, â†⎡⎣ ⎤⎦ = â ⋅ â† − â† ⋅ â = 1  we finally 

get the number operators for the two beam splitter output channels D3 and D4. Evaluating eq. (B.2) we used the 
fact, that in quantum optics “no light at input 2” means “the vacuum state |0〉 is coupled to input 2”. Now we can 
use eq. (B.1) with 

  
â2 0 = 0 â2

† = 0  to get rid of the   â2 -terms: 
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n̂3n̂4 =: â3
†â3â4

†â4 :

= â3
†â4

†â3â4

= 1
4

â1
† + â2

†( ) â1
† − â2

†( ) â1 + â2( ) â1 − â2( ) = 1
4

â1
† â1

† − â2
†( ) â1 + â2( ) â1

= 1
4

â†
1â1

†â1â1 =
1
4

â1
†â1â1

†â1 − â1
†â1( ) = 1

4
n̂1 n̂1 −1( ).

  (B.3) 

By means of eq. (B.3) we evaluate the quantum mechanical second order correlation function (see also Roy 
Glauber’s original publication for additional details (Glauber, 1963)). The ordering of the operators between 
colons (:…:) is referred to as normal ordering: Gathering all creation operators on the left side while the 
annihilation operators are ordered to the right side. With eq. (B.3) inserted into eq. (B.1) we finally find for the 
second order correlation function 

 

  

g3,4
2( ) 0( ) = N3N4

N3 N4

→
n̂3n̂4

n̂3 n̂4

=
n̂1 n̂1 −1( )

n̂1

2 =
n̂1

2 − n̂1

n̂1

2 = 1+
var n1( )− n1

n1

2

=

1 for Poissonian light with var n1( ) = n1

2 for thermal light with var n1( ) = n1 + n1

2

1− 1
n1

for quantum optical Fock-light with var n1( ) = 0

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

.

 (B.4) 

Two remarks for clarification: (1) Quantum mechanics enter the formal argumentation via the commutation 
relation of the destruction and creation operators in eq. (B.1). (2) Antibunching relying on the ability of single 
photon interference as a specific quantum aspect of the photon solely occurs in a quantized treatment. (3) For 
single photon experiment we get g(2)

3,4 (0) = 0. 
 
Appendix C  Apparatus Notes 

Fig. C.1 shows a photo of the experimental set up. Here we give some technical details of the apparatus used in 
the experiments. 
 

 
 

C.1 Experimental set up for the single photon experiment; the light beams are highlighted 
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The pump-laser 
We used a GaN based laser-diode (Sanyo DL-4146-101S) without external cavity. Active Peltier-stabilization of 
the temperature to ± 1mK yields a peak-wavelength stabilized to approximately ± 0.1 pm. The optical power P 
could been controlled via a stabilized forward current of the diode in the range 22 mA ≤ Idiode ≤ 35 mA leading to 
an optical power range 0.1 mW ≤ P ≤ 15 mW. From a Gaussian fit we found an oval shaped beam crosssection 
with diameters Dx/Dy = (1.032 ± 0.012) mm/(1.260 ± 0,012) mm at the location of the BBO-cristal (see fig. C.2). 
 

 
 
C.2 Measurement of the beam crosssection; from the Gaussian fit we get  

(1.032 ± 0.012) mm/(1.260 ± 0,012) mm 

 
Linear polarization of the laser radiation has been ensured via external polarizing filters. 
 
The nonlinear crystal 
For the type-1 parametric-down-conversion we used a coated BBO-crystal sized W = H = 6 mm; L = 3 mm;  
(BBO-0805-23H-crystal from Eksma Optics) with 29.2°-cutting-angle; input wavelength 405 nm, output 
wavelength 810 nm. 
 
Detector system 
Summarizing the technical demands for our high speed low light level APDs 
• not fiber based (for didactical reasons) 
• high quantum efficiency in the near IR (810 nm) 

at 810 nm we could realize a quantum efficiency of about 80 % 
• small dead time to avoid a nonlinear response in the case of high photon rates 

the APD-dead time of τD = 50 ns is given by the length of the quenching pulse; it follows an upper limit 
of the photon counting rates much below 1/τD = 20 ⋅ 106 s–1 

• immunity against overexposure 
to minimize the risk to destroy the detector diode by high avalanche currents, we used an electronic 
protection circuit similar to the one used by (Dhulla, 2007) 

• electrical safety 
educational use imposes high safety demands. The detection system follows CE-standards (e. g. a housing 
connected to PE) 
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Counting unit 
The coincidence counting unit is central for the correlation analysis within the photon counting experiments. The 
general mode of operation is represented in section 2.4. 
 
In our setup we have to meet following technical requirements:  
• based on electronics easy to combine and understand 
• at least three channels to measure 3-fold coincidence 
• a 24-bit counter with sampling rate well above 106 s–1  
• precise controlling of the sampling time T 
• a smallest possible coincidence window width of w < 7 ns 
• a variably adjustable coincidence window width w  
• live visualization of the measurements on a Host-system 
• precisely defined number of single shots for each measurement (see eq. (2.2)) 
 
Due to the demands of a multiplication of the experimental set ups for the utilization in an educational lab, the 
costs are limited to 300 € per counting unit.  
 
The counting unit consists of four subunits: A level-shifter converting the incoming TTL pulse to a logic level of 
3.3 V (20 €), a FPGA on the Altera DE0-nano evaluation board (100 €), a 40 Pin to 40 Pin remapping pcb (15 €) 
adapting outputs of the FPGA to the inputs of the last subunit a Raspberry Pi 3 acting as host-system (50 €, 
including power-supply and sd-card for the operating system). The system is housed in a lasercutted acrylic box 
(35 €). We end up with a price of 220 €. 
 
The level-shifter: 
Operating voltage of the FPGA is 3.3 V, therefore a conversion of the incoming signal is needed. The level-
shifter converts incoming 5 V-high-level-pulses to 3.3 V.  This is done with a 74LVX244 octal buffer actively, 
which is fast enough. With advanced experiments in view, the design has been expanded to a four input channel 
system. 
 
The FPGA: 
Field Programmable Gate Arrays (FPGA) are designed for parallel-data-processing, thus they may be used to 
drive several counter-instances simultaneously. Expanding the system to a parallel driving of 15 counter aimed 
to open up additional counting opportunities: One for each input channel (4), six for the 2-fold coincidences (6), 
four for the 3-fold coincidences (4) and one for the 4-fold coincidences (1). Moreover the pulse-shorter and 
pulse-ANDer are units realized on the FPGA. The FPGA is programmed in Verilog Hardware Description 
Language (VHDL) (source-code can be requested from the authors). We use the implementation of the FPGA on 
an evaluation board to get an out of the box running system at reasonable expanse and value. 
 
The 40 pin-40 pin remapping: 
The 40 pin-header of the Altera DE0-Nano board is incompatible to that one of the Raspberry PI. Therefore a 
remapping is needed. Instead of doing this with a reordered broadband cable, a remapping pcb was designed. 
Easy and fast replication of the hole system is given.  
 
The host-system: 
The host-system provides a graphical user interface (gui) for setup the counting unit (sampling time, coincidence 
time in steps of 6.6 ns, selection of active channels), providing a live-view of incoming counter values and a 
live-chart depicting last 30 counter values. The gui is written in cpp using the qt-framework. The communication 
with the FPGA is done via a customized parallel protocol. For easy replication the authors can offer an image of 
the operating system.  
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A note on timing-characteristics: 
In contrast to other approaches this setup is based on a synchronous pulse shortener using a phase-locked loop 
(pll) to multiply the driving system clock by a factor of eight instead of an asynchronous design. This leads to a 
reproducible behavior of the unit but led to a principle 5 ns-limit of the coincidence window width on this 
FPGA. Due to signal processing and FPGA internal behavior the system reaches in fact 6.6 ns, measured with an 
uncorrelated light source. This still meets the design-goal. 
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